AlzTarget
Mendelian Randomization
Mendelian Randomization (MR) is a statistical technique used to assess causal relationships between exposures and outcomes by leveraging genetic variants as instrumental variables.
GWAS Outcome
We collected summary statistic datasets for three neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). These datasets serve as the outcomes for the MR analysis.
Alzheimer's Disease
AD_Bellenguez_2022
| Outcome | Alzheimer's disease |
| Cohort | 487511 (European) |
| Source | GWAS Catalog: GCST90027158 |
| Reference | Bellenguez C et al. Nat Genet. 2022;54(4):412-436. PubMed: 35379992 |
AD_Jansen_2019
| Outcome | Alzheimer's disease / Family history of Alzheimer's disease |
| Cohort | 455258 (European) |
| Source | GWAS Catalog: GCST007320 |
| Reference | Jansen IE et al. Nat Genet. 2019;51(3):404-413. PubMed: 30617256 |
AD_Kunkle_2020a
| Outcome | Alzheimer's disease |
| Cohort | 8006 (African) |
| Source | NIAGADS |
| Reference | Kunkle BW et al. JAMA Neurol. 2021;78(1):102-113. PubMed: 33074286 |
AD_Kunkle_2020b
| Outcome | Alzheimer's disease |
| Cohort | 8006 (African) |
| Source | NIAGADS |
| Reference | Kunkle BW et al. JAMA Neurol. 2021;78(1):102-113. PubMed: 33074286 |
AD_Schwartzentruber_2021a
| Outcome | Alzheimer's disease / Family history of Alzheimer's disease |
| Cohort | 472868 (European) |
| Source | GWAS Catalog: GCST90012877 |
| Reference | Schwartzentruber J et al. Nat Genet. 2021;53(3):392-402. PubMed: 33589840 |
AD_Schwartzentruber_2021b
| Outcome | Family history of Alzheimer's disease |
| Cohort | 408942 (European) |
| Source | GWAS Catalog: GCST90012878 |
| Reference | Schwartzentruber J et al. Nat Genet. 2021;53(3):392-402. PubMed: 33589840 |
AD_Wightman_2021
| Outcome | Late-onset Alzheimer's disease |
| Cohort | 398058 (European) |
| Source | https://ctg.cncr.nl/people/danielle_posthuma |
| Reference | Wightman DP et al. Nat Genet. 2021;53(9):1276-1282. PubMed: 34493870 |
Parkinson's Disease
PD_Blauwendraat_2019
| Outcome | Parkinson's disease (age of onset) |
| Cohort | 17996 (Various) |
| Source | GWAS Catalog: GCST007780 |
| Reference | Blauwendraat C et al. Mov Disord. 2019;34(6):866-875. PubMed: 30957308 |
PD_Nalls_2019
| Outcome | Parkinson's disease |
| Cohort | 482730 (European) |
| Source | https://www.sciencedirect.com/science/article/abs/pii/S1474442219303205?via%3Dihub#cesec120 |
| Reference | Nalls MA et al. Lancet Neurol. 2019;18(12):1091-1102. PubMed: 31701892 |
Amyotrophic Lateral Sclerosis
ALS_Nicolas_2018
| Outcome | Amyotrophic lateral sclerosis |
| Cohort | 80610 (European) |
| Source | GWAS Catalog: GCST005647 |
| Reference | Nicolas A et al. Neuron. 2018;97(6):1268-1283.e6. PubMed: 29566793 |
ALS_Rheenen_2021a
| Outcome | Amyotrophic lateral sclerosis |
| Cohort | 152268 (138086 European, 14182 East Asian) |
| Source | GWAS Catalog: GCST90027163 |
| Reference | van Rheenen W et al. Nat Genet. 2021;53(12):1636-1648. PubMed: 34873335 |
ALS_Rheenen_2021b
| Outcome | Amyotrophic lateral sclerosis |
| Cohort | 138086 (European) |
| Source | GWAS Catalog: GCST90027164 |
| Reference | van Rheenen W et al. Nat Genet. 2021;53(12):1636-1648. PubMed: 34873335 |
Quantitative Trait Locus
We utilized three types of quantitative trait locus (QTL) datasets as the instrument variables for the MR analysis, including protein quantitative trait locus (pQTL), expression quantitative trait locus (eQTL), and splicing quantitative trait locus (sQTL).
In our selection of high confidence instrumental variables, we employed four criteria:
(1) We used a false discovery rate (FDR) cutoff of less than 0.05 to identify actionable instrumental variables from all QTL datasets.
(2) The strength of the instrumental variables was evaluated using a cutoff of F-statistics greater than 10.
(3) Linkage disequilibrium (LD) pruning was performed using a reference matrix from the 1000 Genomes Project Phase 3, with an LD threshold of r2 less than 0.2. This pruning was conducted using PLINK, where SNPs within a 500kb window and in LD were removed.
(4) To strictly adhere to the assumptions of MR, we excluded instrumental variables that were associated with more than two proteins or RNA expressions in all the QTL datasets. This step ensured that the instrumental variables were specific and did not have widespread effects across multiple targets.
Expression QTL
eQTL_Mayo_Brain_Cerebellum
| Sample | Brain / Cerebellum |
| Cohort | 26568 (European) |
| Source | Mayo |
| Reference | Sieberts SK et al. Sci Data. 2020;7(1):340. PubMed: 33046718 |
eQTL_Mayo_Brain_Cortex
| Sample | Brain / Temporal cortex |
| Cohort | 18194 (European) |
| Source | Mayo |
| Reference | Sieberts SK et al. Sci Data. 2020;7(1):340. PubMed: 33046718 |
eQTL_Metabrain_Brain_BasalGanglia
| Sample | Brain / Basal ganglia |
| Cohort | 81 (European) |
| Source | MetaBrain |
| Reference | de Klein N et al. Nat Genet. 2023;55(3):377-388. PubMed: 36823318 |
eQTL_Metabrain_Brain_Cerebellum
| Sample | Brain / Cerebellum |
| Cohort | 568 (European) |
| Source | MetaBrain |
| Reference | de Klein N et al. Nat Genet. 2023;55(3):377-388. PubMed: 36823318 |
eQTL_Metabrain_Brain_Cortex
| Sample | Brain / Cortex |
| Cohort | 1335 (European) |
| Source | MetaBrain |
| Reference | de Klein N et al. Nat Genet. 2023;55(3):377-388. PubMed: 36823318 |
eQTL_Metabrain_Brain_Hippocampus
| Sample | Brain / Hippocampus |
| Cohort | 65 (European) |
| Source | MetaBrain |
| Reference | de Klein N et al. Nat Genet. 2023;55(3):377-388. PubMed: 36823318 |
eQTL_Metabrain_Brain_SpinalCord
| Sample | Brain / Spinal cord |
| Cohort | 42 (European) |
| Source | MetaBrain |
| Reference | de Klein N et al. Nat Genet. 2023;55(3):377-388. PubMed: 36823318 |
eQTL_MultiCenterMetaAnalysis_Brain_Cortex
| Sample | Brain / Dorsolateral prefrontal cortex & Temporal cortex |
| Cohort | 70473 (European) |
| Source | Mayo |
| Reference | Sieberts SK et al. Sci Data. 2020;7(1):340. PubMed: 33046718 |
eQTL_ROSMAP_Brain_Cortex
| Sample | Brain / Dorsolateral prefrontal cortex |
| Cohort | 52191 (European) |
| Source | ROSMAP |
| Reference | Sieberts SK et al. Sci Data. 2020;7(1):340. PubMed: 33046718 |
Protein QTL
pQTL_Banner_Brain_Cortex
| Sample | Brain / Dorsolateral prefrontal cortex |
| Cohort | 2538 (European) |
| Source | Banner |
| Reference | Robins C et al. Am J Hum Genet. 2021;108(3):400-410. PubMed: 33571421 |
pQTL_ROSMAP_Brain_Cortex
| Sample | Brain / Dorsolateral prefrontal cortex |
| Cohort | 3211 (European) |
| Source | ROSMAP |
| Reference | Robins C et al. Am J Hum Genet. 2021;108(3):400-410. PubMed: 33571421 |
pQTL_ROSMAP_Brain_Cortex[Ctl]
| Sample | Brain / Dorsolateral prefrontal cortex |
| Cohort | 550 (European) |
| Source | ROSMAP |
| Reference | Robins C et al. Am J Hum Genet. 2021;108(3):400-410. PubMed: 33571421 |
Splicing QTL
sQTL_BrainMeta_Brain_Cortex
| Sample | Brain / Cortex |
| Cohort | 654603 (European) |
| Source | BrainMeta |
| Reference | Qi T et al. Nat Genet. 2022;54(9):1355-1363. PubMed: 35982161 |
sQTL_GTEx_Brain_Amygdala
| Sample | Brain / Amygdala |
| Cohort | 1155 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
sQTL_GTEx_Brain_AnteriorCingulateCortexBA24
| Sample | Brain / Anterior cingulate cortex BA24 |
| Cohort | 1420 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
sQTL_GTEx_Brain_CaudateBasalGanglia
| Sample | Brain / Caudate basal ganglia |
| Cohort | 1808 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
sQTL_GTEx_Brain_CerebellarHemisphere
| Sample | Brain / Cerebellar hemisphere |
| Cohort | 2295 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
sQTL_GTEx_Brain_Cerebellum
| Sample | Brain / Cerebellum |
| Cohort | 2424 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
sQTL_GTEx_Brain_Cortex
| Sample | Brain / Cortex |
| Cohort | 1943 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
sQTL_GTEx_Brain_FrontalCortexBA9
| Sample | Brain / Frontal cortex BA9 |
| Cohort | 1766 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
sQTL_GTEx_Brain_Hippocampus
| Sample | Brain / Hippocampus |
| Cohort | 1426 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
sQTL_GTEx_Brain_Hypothalamus
| Sample | Brain / Hypothalamus |
| Cohort | 1569 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
sQTL_GTEx_Brain_NucleusAccumbensBasalGanglia
| Sample | Brain / Nucleus accumbens basal ganglia |
| Cohort | 1963 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
sQTL_GTEx_Brain_PutamenBasalGanglia
| Sample | Brain / Putamen basal ganglia |
| Cohort | 1442 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
sQTL_GTEx_Brain_SpinalCordCervicalC1
| Sample | Brain / Spinal cord cervical C1 |
| Cohort | 1300 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
sQTL_GTEx_Brain_SubstantiaNigra
| Sample | Brain / Substantia nigra |
| Cohort | 1036 (European) |
| Source | GTEx |
| Reference | Garrido-Martín D et al. Nat Commun. 2021;12(1):727. PubMed: 33526779 |
Methods
We selected the appropriate MR methods based on the number of proposed instrumental variables (IVs) for each target. In total, we used six methods to validate all the targets:
(1) Number of IV = 1 - we used the Wald ratio estimator.
(2) Number of IV = 2 - we used the IVW fixed-effect model.
(3) Number of IV ≥ 3 - we used several MR methods to evaluate the causal effects, including the IVW random-effect model, MR-presso, Maximum Likelihood (MaxLik), Egger, and Weighted Median methods.
We conducted a heterogeneity test for the IVs in the IVW and MaxLik methods. If the Cochran's Q test p-value was less than 0.05 and the I2 statistics exceeded 0.5, we conducted robust IVW and MaxLik models by penalizing outlier IVs.
| Name | Package | Source |
|---|---|---|
| Egger | MendelianRandomization v0.5.1 | https://cran.r-project.org/web/packages/MendelianRandomization/ |
| IVW | MendelianRandomization v0.5.1 | https://cran.r-project.org/web/packages/MendelianRandomization/ |
| MRpresso | MendelianRandomization v0.5.1 | https://cran.r-project.org/web/packages/MendelianRandomization/ |
| MaxLik | MendelianRandomization v0.5.1 | https://cran.r-project.org/web/packages/MendelianRandomization/ |
| WeightedMedian | MendelianRandomization v0.5.1 | https://cran.r-project.org/web/packages/MendelianRandomization/ |
| WaldRatio | TwoSampleMR v0.5.6 | https://mrcieu.github.io/TwoSampleMR/ |